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STRUCTURAL PROPERTIES FOR TWO CLASSES 
OF COMBINED RANDOM NUMBER GENERATORS 

PIERRE L'ECUYER AND SHU TEZUKA 

ABSTRACT. We analyze a class of combined random number generators recently 
proposed by L'Ecuyer, which combines a set of linear congruential generators 
(LCG's) with distinct prime moduli. We show that the geometrical behavior of 
the vectors of points produced by the combined generator can be approximated 
by the lattice structure of an associated LCG, whose modulus is the product 
of the moduli of the individual components. The approximation is good if 
these individual moduli are near each other and if the dimension of the vectors 
is large enough. The associated LCG is also exactly equivalent to a slightly 
different combined generator of the form suggested by Wichmann and Hill. We 
give illustrations, for which we examine the approximation error and assess the 
quality of the lattice structure of the associated LCG. 

1. APPROXIMATING A COMBINED GENERATOR BY AN LCG 

Consider J linear congruential generators (LCG's), J > 2, such that for 
j=1,..., J, generator j has modulus m and multiplier a1. Suppose that 
the m.'s are all distinct primes and that each LCG has maximal period m1 - 1 
(aj is a primitive element modulo mj) . Let sji denote the state of generator 
i at step i, that is, 

(1) sji := ajsj, i- I mod m. 

Let 6, . be arbitrary nonzero integers. Define the two combined gener- 
ators 

(2) Zi 6jSi) modm, Ui=Zi/m1, 

and 

(3) W = ( j mod 1 
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The former is suggested in [5] (with 3i = ( 1)1- , for ease of implementation), 
while the latter generalizes Wichmann and Hill [ 1]. Let 

(4) n =(M-) modm1 forj=l,...,J, 
M~~~~ 

(5) m = fim , 
j=1 

(6) a= (E1a 
m modm , 

(6) (a aj=1 ) 

and define the LCG (with composite modulus): 

(7) Y1:=aYl? modm, U1=YI/m. 

In Proposition 1 below, we show that the combined generator (3) is equiv- 
alent to the LCG (7). This is related to the Chinese Remainder Theorem and 
means that (3) is in fact an implementation of (7) using modular arithmetic [4, 
?4.3.2]. An alternative approach for computing a is also given in [4, p. 274]. 
In Proposition 2, we show that if the m1's are near each other, generator (2) 
is approximately equivalent to (7) and (3), with some added "noise." We give 
tight bounds on the noise. This approximation is valid under the assumption 
that to produce U(O, 1) variates, the generator's state is simply divided by the 
modulus, as in (2) and (7). These results were derived in [9] for the special 
case J = 2 and 6, = $2 = 1. Note that a and m do not depend on the 
3 's. A corollary to Proposition 1 is that the period length of (3) is equal to the 
Carmichael's function A(m), which in this case is equal to the least common 
multiple of ml - ,..., m -1 . 

Proposition 1. If Yo/m = WO, then U1 = Y1/m = Wi for all i > O. 

Proof. From the definition of n3 and from Fermat's Little Theorem (see, e.g., 
[8]), one has 

(8) n ( mod = ( mod = 1, 

so that njm/mj = 1 + Km1 for some integer K and 

(m/ ~ d+2 m 
n ml mod m = r M 

(I w A m mod Wm _ m 
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From this, and since (m/mk)(m/mj) mod m = 0 for k $ j, one gets 

amWimodm= YIkMay) yI Jmodm 

(= l (ii) 2 )mom 

=(y~, (21) ~iij)mo 

=(f (2m) o1(ads- mod in)) mod m = mWi1. 

Therefore, mJ~j satisfies the recursion (7), the same as 1'> 0 

Corollary 1. The period of (3) (and (7)) is always equal to A~(m), provided that 
for all, we have (cmod m1)$ n 0 and (s1, mod m1)$. 
Proof. It suffices to show that Y0 = mWO, is prime to mn and that a is a 
primitive element module m, and the result will follow from Carmichael's 
Theorem [4, ?3.2.1.2]. Under the assumption of the corollary, since in1 is 

prime, 31s10m/m1 is prime to m i, and mWo = mj) mkSkod/ik too, because 
in this sum, all terms with indices k $& j are multiples of in1. Since this 
holds for all i, a Wt is prime to all prime factors of m, that is, prime to m . 
Saying that a is a primitive element module m means that there is no positive 
integer k smaller than A(in) such that ak mod mn = 1 . If such a k exists, then 

a1 modin, = ak modin3 = 1 because a modin1 = (ajnjmn/m1) mod in1 = a1 
from (8). But since a1 is a primitive element modulo i1, k must be a multiple 
of re(m4) = i- 1 . Since this holds for all i, k must be a multiple of A(in). 0 

Here, the period of (7) is much smaller than i - 1 (for J > 2) because 
the set of states { 1, .. ., nm - 1} is partitioned into subcycles. Of course, it is 
possible to recover the full period by juxtaposing or interleaving the subcycles. 
But this complicates the implementation and does not appear to be really helpful 
in practice. 

Define 
a = {11o2 m a ? J and (an - mlj=m > 0}, 

v = {8 2 B u ? J and (iin - mfuba <0 }, 

= 
+ (inc -ml)(m j-1m e u e (m1-m1)3 

Hee tep rio of (7) ismc mle hnm- frJ>2 eas 

possible tore over th fulpro y utpsn r inelaigtesbyls 

A = max(IA2a, 1A 1).> 
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Proposition 2. If Yo/m = WO, then 

(9) U, = (Wi + ej) mod 1, 

where 

(1 0) A<i< 

Proof. For some integer K, one has 

zi = ( +1- mod ml 

-E mod ml 

- (mIYi + m )e1) mod inm, 

where 
i~ m1" J (in -ml0-- 

mlei = 
E I - 

-) }}i 
= 

E m 
j~ ] =2 3 

Upon division by ml, and since 1 < sij < mj - 1 for all j1 (9) and (10) follow 
easily. 5 

Note that the bounds on ei are tight, since ei = A+ [ei = A] (respectively) 
when sji = mj- 1 for j E T+ [for j E -P] and sji = 1 for j E - 

[for j E T+]. For example, let J = 2, 5$1 = 1, 2 = -1, and ml > m2. 
Then, T+ = {2}, vT is empty, A+ = (ml - m2)(m2 - 1)/(mmI 2)A = 

(ml - m2)/(mIm2), and ei = (ml - m2)s2i/(mIm2). We have ei = A+ when 

s2i = m2 - 1, and ei1= A when s2i = 1. 
From now on, assume that Y /m = Wi . It is well known [3, 4] that all t-tuples 

of successive values {IP = (U0i ..., Ui+t-1) = (Wi" 5... Wi+t-) E [0, 1)t, 

i > 0} lie on a lattice Lt . Different "figures of merit," relative to the geometrical 
properties of Lt, can be computed for "rating" the corresponding LCG. Among 
them are the Beyer quotient qt E (0, 1 ] and the distance dt between successive 
hyperplanes covering the points [2, 4, 3]. It is traditionally accepted that qt 
should be near one for all values of t up to a certain constant T (or for which 
qt can be computed). But the generator's quality also depends strongly on the 
modulus. As argued in [7], a generator with larger modulus (or of higher order), 
even if it has a smaller qt , might be better. A good "bottom of the line" criterion 
is in fact the distance dt between hyperplanes. Reducing dt in all dimensions 
t should be considered as an improvement. 

Note that for J > 2, the t-tuples pi form a strict subset of the lattice points 
in [0, 1)t, since generator (7) does not have maximal period (m is not prime). 
But if we take all t-tuples of successive values produced by all subcycles of the 
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generator, then this set of points is Lt f [0, 1)' for some lattice Lt, and this is 
the lattice that we analyze in this paper. 

The points {P/ = (U, ,.., U>+ 1),i O} do not belong in general to L . 
But we see from Proposition 2 that the Euclidean distance between Pit and pt 
obeys 

(11) II- Pt < (92 +. + , 1/2 < An 

(To take into account the mod 1 operation, consider all the t-dimensional unit 
hypercubes with integer vertices. Each one contains a "representative" of Pit 
whose coordinates are the same as Pi, modulo one. Redefine IPt -Pill as the 

1' I 

Euclidean distance between pit and the nearest representative of Pt.) When 
AX/i is much smaller than dt, the combined generator has approximately the 
same hyperplane structure as its associated LCG. To get rid (to some extent) 
of the lattice structure (at least in smaller dimensions), one should get a larger 
A. This can be achieved by increasing the values of (in(m1 - m 1) . We remark 
that AV'I is just an upper bound. However, for all the examples that we have 
examined, that bound was always attained (or almost attained) for some i. 

2. THE APPROXIMATE LATTICE STRUCTURE FOR SOME EXAMPLES 

Example 1. Let J = 2, ml = 101, m2 = 97, a, = 51, a2 = 58, 61 = 1, and 
2 = -1 . Equations (2) and (3) become respectively Zi = (S i - s2d) mod 101 
and Wi = (sli/101 - s2i/97) mod 1, which have period 2400. One obtains 
m = 9797, n =(9799 mod 101) = 25, n2 = (10195 mod 97) = 73, a = 

(alnlm2+ a2n2m1) mod m = 2677, A ^ 0.0004, and A = A+ ^ 0.0392. The 
associated LCG is then 

(12) Yi = 2677Yi 1 mod 9797. 

Pairs of successive values are plotted in Figures 1-4 for the two combined gen- 
erators and the two individual components. The latter have small periods and 
coarse lattice structures. The lattice structure of the LCG (12), which corre- 
sponds to the Wi's, is also apparent in two dimensions. Although it is certainly 
not to be recommended, this generator is nevertheless an improvement over 
each (much smaller) individual component. The plot for the other combina- 
tion (the Ui's, in Figure 4) looks a little better. The lines of Figure 3 are no 
longer apparent. In fact, the distance between adjacent lines in Figure 3 is 
0.0175, while the bound in (11) is AvK- 0.0554. The resolution along each 
axis is smaller in Figure 4 than in Figure 3: all Ui's are multiples of 1/mr, 
while the Wi's are multiples of 1/rm, which is much smaller. This is why, in 
Figure 4, the points lie on easily discernible equidistant vertical lines, and also 
on equidistant horizontal lines. 
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1.0' 

slt+l/101 

0.0- 
0.0 1.0 

sli/101 

FIGURE 1 
All pairs of successive points for the LCG with m = 101 and a = 51 

1.0 - 

0.0- 
0.0 1.0 

S2t/97 

FIGURE 2 
All pairs of successive points for the LCG with m= 97 and a = 58 
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FIGURE 3 

Pairs of successive points for the LCG with m =9797 and a =2677 
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TABLE 1 
Results for the LCG's of Example 1 

(m, a) (ml, a,) (M2, a2) 
t qt dt A dt dt 

2 .3305 .0175 .0554 .447 .196 
3 .2479 .0953 .0679 .447 .218 
4 .7597 .1111 .0784 .447 .377 
5 .6362 .1925 .0876 .447 .500 
6 .8029 .2182 .0960 .447 .500 
7 .7395 .2887 .1037 .500 .500 
8 .5671 .4472 .1109 .500 .500 
9 .5731 .4472 .1176 .500 .577 
10 .6400 .4472 .1239 .577 .577 
11 .6417 .4472 .1300 .577 .577 
12 .7468 .4472 .1358 .577 .577 

In higher dimensions, the distance between hyperplanes typically gets larger, 
often significantly larger than A. In Table 1, we give the Beyer quotients qt. 
distances dt between hyperplanes, and values of A\/'t for the LCG (12), for 
t < 12. For comparison, we also give the values of dt for the individual LCG 
components. These quantities were computed using (with some adaptations) 
the algorithm described in [1]. 

Example 2. One combined generator which was suggested in [5] has J = 2, 
ml = 2147483563, m2 = 2147483399, a, = 40014, a2 = 40692, di = 
1, and 62 = -1. In this case, one has m = 4611685301167870637, n1 = 
1715367968, n2 = 432115562, a = 1968402271571654650, A- - 3.5 x 

1 7 8 
10 , and A = A+ 7.637 x 10 . The combined generator (2), as well as its 
associated LCG Y, = a YK - mod m, have period length of (mi - 1) (m2 - 1)/2 2 
2.306 x 1018. Table 2 gives similar information as Table 1, for this second 
example. One can see that in high dimensions, the "noise" AX/t becomes very 
small with respect to the distance between hyperplanes. This was already noticed 
by Tezuka [9]. On the other hand, the hyperplane structure of the associated 
LCG is much better than for any of its components, and much better than 

3 1 for any LCG with modulus smaller than 2 . This is true despite its bad Beyer 
quotient in dimension 4. That combined generator has essentially the properties 
of an LCG with larger modulus m and can be implemented efficiently without 
getting into the trouble of dealing with large integers (of more than 31 bits). As 
we will see in Example 4, for the same size, one can also find better combined 
generators than this one. 

Example 3. Wichmann and Hill [11] originally suggested a combination of the 
form (3), with J = 3, mi = 30269, m2 = 30307, m3= 30323, a1= 171, 
a2= 172, a3 = 170, and 61 = 3= c3 = 1. This yields m= 27817185604309, 
n= 26478, n2 = 26070, n3 = 8037, and a = 16555425264690. The 
equivalence of this generator to an LCG was first pointed out by Zeisel [12]. If 
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TABLE 2 
The 32-bit combined generator of L'Ecuyer [5] 

(m, a) (ml, a) (m2, a2) 
t qt dt i\7Vt dt dt 

2 .5009 6.50E-10 1.08E-7 2.499E-5 2.457E-5 
3 .7016 7.002E-7 1.32E-7 8.263E-4 8.441E-4 
4 .1443 4.635E-5 1.53E-7 4.954E-3 4.852E-3 
5 .5975 2.008E-4 1.71E-7 1.334E-2 1.240E-2 
6 .6173 8.890E-4 1.87E-7 2.670E-2 2.637E-2 
7 .6130 2.621E-3 2.02E-7 7.274E-2 7.274E-2 
8 .5737 5.782E-3 2.16E-7 7.274E-2 7.274E-2 
9 .5589 9.571E-3 2.29E-7 9.806E-2 8.737E-2 
10 .5532 1.738E-2 2.41E-7 1.474E-1 1.054E-1 
11 .6390 2.361E-2 2.53E-7 1.474E-1 1.324E-1 
12 .6635 3.077E-2 2.64E-7 1.474E-1 1.443E-1 

one uses equation (2) with these values, one also gets A -0.00125 and A = 
A+ 0.00178. L'Ecuyer [5] gave a different one, of the form (2), with J = 3, 
ml =32363, m2= 31727, m3= 31657, a= 157, a2= 146, a3= 142, and 
8= -82 = 83= 1. In that case, one has m = 32504802982957, n, = 29617, 

n2 17633, n3 = 16749, a = 30890646900944, A+ 0.0196, and A = 

-A- 0.00218. These generators have respective periods of (approximately) 
12 12 6.95x 10o and 8.12x10 . Tables 3 and 4 give other information on them and 

on their components. The associated LCG of the second combined generator 
is bad in dimensions 2 and 6 compared to the first one. But note that even if 
q2 is small, d2 is nevertheless smaller in this case than for any standard LCG 
with modulus m = 231 _ 1. Also, the added noise is significantly larger than 
the distance between hyperplanes, at least up to dimension 12. The hyperplane 
structure is lost in the noise. On the other hand, the resolution is only 1/mr, 
which means that all points lie on vertical lines that are 1/32363 apart (and 
the same horizontally). For this reason, perhaps this generator should not be 
recommended too strongly for serious applications. 

Example 4. We now give an example of a combined generator of roughly the 
same size as Example 2, whose associated LCG has a lattice structure of slightly 
better quality, and with much more noise. Incidentally, its two LCG compo- 
nents have bad lattice structures in dimension 3. The first one has q3 = 0.0167 
and the second one has q3 = 0.1022. One has J = 2, m, = 2147483647, 
m2 = 2145483479, a1 = 26756, a2 = 30318, 81 = 1, and 2 = -. In 
this case, one has m = 4607390686061167913, n1 = 1317463960, n2 = 

829246600, a = 3416908681540390868, A 4.34 x 10- 13, and A = A/+ z 

9.314 x 10 4. The combined generator (2) and its associated LCG (7) have 
period length of (mi - 1)(m2 - 1)/2 2.30 x 1018 . Table 5 gives further infor- 
mation. Up to dimension 7, there could be enough noise to mask the hyperplane 
structure. Also, the smallest Beyer quotient is larger here than for Example 2. 
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TABLE 3 
The combined generator of Wichmann and Hill [ 11] 

(m, a) (ml, a,) (M2, a2) (M3, a3) 

t qt dt |AO dt dt dt 

2 .6371 2.370E-7 .0025 .0058 .0058 .0058 
3 .4842 4.428E-5 .0031 .1562 .0459 .0419 
4 .7084 5.418E-4 .0036 .1562 .0905 .1374 
5 .8313 2.076E-3 .0040 .1562 .1313 .1374 
6 .7275 6.328E-3 .0044 .1690 .1768 .2294 
7 .4582 1.690E-2 .0047 .3536 .2425 .2294 
8 .7190 2.478E-2 .0050 .3536 .3333 .3333 
9 .8083 2.993E-2 .0054 .3536 .3333 .3333 
10 .7242 4.588E-2 .0056 .3536 .3333 .3333 
11 .7422 5.987E-2 .0059 .3536 .3333 .3780 
12 .7185 7.255E-2 .0062 .4472 .4082 .3780 

TABLE 4 

The 16-bit combined generator of L'Ecuyer [5] 

(m, a) (ml, a,) (M2, a2) (M3, a3) 

t qt dt t dt dt dt 

2 .0181 1.304E-6 .0308 .0064 .0068 .0070 

3 .6209 4.184E-5 .0378 .0329 .0390 .0369 
4 .6868 4.638E-4 .0436 .0758 .0867 .0765 
5 .6003 2.069E-3 .0487 .1302 .1348 .1302 

6 .2368 1.357E-2 .0534 .1741 .1890 .1768 
7 .6617 1.357E-2 .0577 .2887 .2500 .2582 
8 .4987 3.176E-2 .0617 .2887 .3536 .2774 
9 .5420 3.328E-2 .0654 .4082 .3536 .2887 

10 .7849 4.921E-2 .0690 .4082 .3536 .3780 

11 .7711 5.670E-2 .0723 .4082 .3536 .3780 

12 .8363 6.523E-2 .0756 .4472 .3536 .3780 

TABLE 5 
A new 32-bit combined generator 

(ma) (ml, a,) (m2, a2) 

t qt dt A 7/t dt dt 

2 .6934 5.54E-10 1.32E-3 3.738E-5 3.298E-5 

3 .7979 6.379E-7 1.61E-3 5.138E-3 2.986E-3 
4 .8388 2.156E-5 1.86E-3 5.138E-3 5.717E-3 

5 .9328 1.737E-4 2.08E-3 1.724E-2 1.623E-2 
6 .8074 7.731E-4 2.28E-3 4.046E-2 3.400E-2 
7 .5380 2.384E-3 2.46E-3 4.730E-2 5.184E-2 

8 .7447 4.996E-3 2.63E-3 7.495E-2 8.909E-2 
9 .7727 9.720E-3 2.79E-3 1.072E-1 8.909E-2 

10 .6280 1.266E-2 2.95E-3 1.104E-1 1.361E-1 
11 .7768 1.930E-2 3.09E-3 1.562E-1 1.361E-1 
12 .7795 2.859E-2 3.22E-3 1.562E-1 1.474E-1 
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3. CONCLUSION 

The combined generators of the forms (3) and (2) are respectively equivalent 
and approximately equivalent to an LCG. This structural property might appear 
deceptive at first, because one of the goals of combination was to get rid of the 
lattice structure of the components. But in fact, they give a stronger theoretical 
basis to these combination approaches. They show that combination can be 
viewed as an efficient way of implementing (sometimes with added noise) an 
LCG with much larger modulus than the largest integer representable on the 
target computer. If well chosen, that LCG will have much better properties 
than any of its components. Selecting a combined generator should be based 
on the properties of its associated LCG rather than on those of its components. 
After extensive numerical investigations, we found that the quality (in terms of 
lattice structure) of the associated LCG is essentially unrelated to the quality of 
its individual components. This means that when searching for good combined 
generators, searching for individual components with the best lattice structure 
(as was done in [5]) is essentially useless. When the individual moduli differ 
enough (with 6i = ? 1), the lattice structure of (7) is usually not recognizable 
by looking at the points produced by (2) in small dimensions. With appropriate 
parameters, combination (2) can be used to get rid of the lattice structure up to 
a given dimension. 

An alternative approach, which yields a lattice structure of comparable qual- 
ity to combination (3) and longer period, is to use a multiple recursive generator 
of order J (see [6, 7]). 
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